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A B S T R A C T

Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the
rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of
structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be
sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight.
The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing
bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology
and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes
of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the
concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on
torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed
to explain the compressive stiffening response of the ring caused by differently oriented struts.

1. Introduction

1.1. Bird wing skeletons and wing motion

Birds and flying mammals (bats) have lightweight skeletons, which
coupled with a high lift to weight ratio, make flight possible. Birds
range in mass from several grams (hummingbird) to more than 100 kg
(ostrich), with overall range of birds weighing between 10 g and 10 kg
(Silva et al., 1997). For bald eagles, the skeleton amounts to only 7% of
the body mass, ~1/3 of what the feathers represent (Brodkorb, 1955).
For flight, other adaptations have evolved such as having a smaller
number of bones compared to terrestrial vertebrates, and the fusion of
some bones (Proctor and Lynch, 1993; Wolfson, 1955). Birds also have
a complex pulmonary system; many have pneumatic bones (particularly
the proximal limb bones - the humerus and femur) that are directly
connected to the respiratory system, thereby increasing buoyancy
(Proctor and Lynch, 1993; Gill, 2007; O'Connor and Claessens, 2005).
Flying birds have more hollow bones (not marrow filled) than flightless
birds (e.g. ostrich, penguin) (Proctor and Lynch, 1993). Diving birds
and hummingbirds have few hollow bones. The diving birds need to
have a higher density skeleton to propel themselves through water, and
for hummingbirds, the weight savings involved with hollow bones is

minimal (Proctor and Lynch, 1993). Bird bones are characterized by a
much thinner sheath of cortical bone, compared to terrestrial animals
(Currey and Alexander, 1985). The mean bending strength and flexural
modulus were found to be significantly higher for marrow-filled than
pneumatic bones, but these calculations do not incorporate the differ-
ences in moment of inertia due to the internal structure (Cubo and
Casinos, 2000). The ratio of internal to external radius is larger in
pneumatic bones (~0.80) than in marrow filled bones (~0.65), which
results in a mass advantage of pneumatic over marrow filled bones,
estimated to be between 8% and 13% by Pauwell (Pauwells, 1980) and
Currey and Alexander (Currey and Alexander, 1985).

The bird wing skeleton consists of the humerus (‘upper arm’), which
is attached to the main flight muscles in the breast, the ulna and radius
(radio-ulna or ‘forearm’), carpometacarpus (‘wrist’ and ‘hand’) and the
phalanges (‘fingers’). These are shown in Fig. 1 for a turkey vulture
(Cathartes aura) wing (Novitskaya et al., 2014). Turkey vultures com-
prise the largest group of New World vultures and are large, soaring
birds with an average wingspan of ~ 1.7 m, weigh between 1–2 kg, and
feed exclusively on carrion. During flight, the ulna (the main load-
bearing element of the radio-ulna) is roughly perpendicular to the hu-
merus, which itself is shorter and thicker, since it needs to withstand
larger forces (Proctor and Lynch, 1993).
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Wing motion can be classified as flapping/soaring (flapping wings
and soaring, e.g. vultures, eagles), flapping/gliding (flapping wings and
gliding, e.g. seagulls, pelicans), flapping (with periodic gliding, e.g.
ravens, crows) and flightless (e.g. emus, ostriches and rheas)
(Pennycuick, 2008; Bruderer et al., 2010). Microstructural analysis was
recently performed on the cross-sections of humeri and ulnae for sev-
eral flying and non-flying bird species (Novitskaya et al., 2014). It was
found that thickness of the bone walls was not uniform for all flying
birds due to presence of external pressure and stress distribution in
them during the flight. Additionally, it was concluded that bones from
flapping/soaring and flapping/gliding birds had ovalized sections,
while bones from flapping and non-flying birds have more circular
cross-sections.

1.2. Bird bone adaptations

An interesting example of structural adaptation in nature is the in-
ternal structure of avian wing bones, which consists of reinforcing
structures (struts and ridges, see Fig. 2) (Proctor and Lynch, 1993;
Pennycuick, 2008). The bones need to be sufficiently strong and stiff to
withstand forces during takeoff, flight, and landing. Wing bones have to
resist both bending and torsion loads; they are rarely loaded in pure
tension or compression. Due to the high metabolic cost of creating
bone, it is believed that the reinforcing structures in bird wing bones
grow in response to specific stresses experienced by flying birds, and
therefore should be optimal for their purpose. As with mammalian
bone, there is a periosteal and endosteal sheath surrounding the cortical
bone and a medullary core that is filled with less dense trabecular bone,
as shown in the schematic illustration in Fig. 2b. Examples of struts
commonly found in many avian bones are shown in Fig. 2a,c from a
condor femur and turkey vulture humerus, respectively, for illustrative
purposes. The struts are isolated rods that span across the interior
diameter of the bone. The struts cannot be classified as trabecular bone
because the density of the array is too low. They appear to be at loca-
tions “in need,” working against extensive bending forces and pre-
venting the localized buckling of bone walls. They are mainly found on
the ventral side of the wing bones of flying birds (Novitskaya et al.,
2014; Pennycuick, 2008). Interestingly, the ulnae of the vulture and
gull (soaring and gliding birds) have the struts, while ulnae of the raven
and duck (flapping and non-flying birds) lack those (Novitskaya et al.,
2014). The ridges are rod-like in appearance that lay flat against the
interior wall (Fig. 2d). The orientation of the ridges likely develops at
about± 45° to horizontal axis to help carry large tensile stresses de-
veloped during torsion along those directions. Maximum tensile and
compressive stresses are generated at± 45° to the longitudinal axis.
Ridges aligned in these directions will decrease tensile stresses that
occur in torsional loading and reverse torsional loading. Since failure in
bone is produced by tensile stresses, the configuration of ridges along
such directions is most effective (Fig. 2e).

Table 1 lists some of the physical and mechanical properties of
humeri and ulnae for different birds, compared to bovine femur bone.
The bird bones have higher porosity and lower density, compared to the
bovine bone. Additionally, among the birds, the domestic duck has the
highest porosity and lowest mineral content, indicating that having
high wing bone strength is not essential for a non-flying birds. The
present values for the density of the humerus are lower than the mean
density found in perching birds (Dumont, 2010), which suggests that a
reduction in mineral content for larger soaring and gliding birds is a
beneficial development for weight savings and increasing toughness.

The current study will describe in details the influence of struts on
the mechanical performance of bird wing bones, while the impact of
ridges will be summarized in another publication. Particularly, we
analyze the internal structure of wing bones from a turkey vulture and a
California condor (Gymnogyps californianus) to assess the contribution
of reinforcing struts to bending (ovalization) and torsion resistance.
Additionally, bone prototypes with reinforcing structures (struts) were
fabricated by 3D printing and mechanical testing was performed to
investigate ovalization and torsional behaviors. Finally, an elastic
model of a circular ring reinforced by horizontal and vertical struts was
developed to explain the stiffening of the ring caused by the differently
oriented struts.

2. Mechanics background

2.1. Bending and torsion analysis of thin walled sections

Fig. 3a shows the main torsion and bending axes and their re-
spective moment arms for wing bones during activity. During lift, the
dominant bending and torsion moment are balanced by a downward
pull of the pectoralis muscle. From Fig. 3a one can see that the humerus
is subjected to significant torsion. The “radio-ulna unit” can only rotate
in the plane of the wing, and is subjected to a bending moment from the
outer part of the wing. This is transmitted through the joint as a
twisting moment on the humerus (Pennycuick, 1967). The bending and
torsional moments carried by the humerus are transferred to the
proximal end of the radio-ulna through the elbow joint. The points of
application of the forces are marked in the feathers and are approxi-
mately 25% of their length. This is, of course, an approximation that
integrates the distributed load on the feather due to the aerodynamic
force. The bending moment and torsion axes for a specific feather with
respect to the humerus are shown in Fig. 3a. The bending moment arm
with respect to the proximal end of the humerus is OB and torsion arm
is OA. The bending moment is = ×M F OB and the torque is

= ×T F OA. The humerus has evolved to resist bending and torsion,
and is has adapted to resist torsion at both microscopic and macro-
structural levels (de Margerie et al., 2006).

For simplicity, the wing bones of flying birds can be considered as a
hollow cylinder with thin walls. If placed in bending, the relationship

Fig. 1. Photograph of the bones in the left wing of a
turkey vulture, pointing out the humerus (attached
to the body), radius, ulna and carpometacarpus.
Adapted from (Novitskaya et al., 2014). The red
circle indicates the area of maximum bending and
torsion moments during flight (Pennycuick, 2008).
(For interpretation of the references to color in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 2. Condor femur: (a) Photograph of the bone interior showing an array of struts that are isolated rods spanning across the interior diameter of the bone and (b) cross-sectional
schematic diagram of the bone components in a wing, which is similar to the structure of mammalian bone, having a periosteal and endiosteal sheath surrounding the cortical bone and a
medullary core that is filled with less dense bone. Adapted from (Davis, 1998). Turkey vulture humerus: (c) Longitudinal cross-section, showing an array of struts (truss-like), with the
struts at ~ 45°. (d) Top view showing the ridges, which are rod-like in appearance and lay flat against the interior wall, either parallel to the diameter or slightly angled from the long axis
of the bone. (c) and (d) taken from (Kiang, 2013). (e) Schematic diagram of how the orientation of the ridges may form in the interior of wing bones as a result of torsional forces (T): the
oriented ridges resist torsional rotation because reinforcement ridges are aligned with the direction of maximum tensile stress, implying that the ridges increase resistance to tensile
fracture.

Table 1
Mineral content, density, porosity and microhardness of the humerus (H) and ulna (U) in bird bones compared to bovine cortical femur bone (Novitskaya et al., 2014).

Mineral content (wt%) Density (g/cm3) Porosity (%) Microhardness (MPa)

H U H U H U H U

Turkey vulture 60±1 61±2 1.6± 0.1 1.2± 0.1 11±2 11±2 400±100 400±100
California gull 66±1 65±2 1.4± 0.1 1.3± 0.1 13±3 9±1 580±50 510±80
Common raven 64±2 63±1 1.3± 0.1 1.5± 0.1 14±1 13±3 560±60 580±50
Domestic duck 43±1 43±1 1.2± 0.2 1.3± 0.2 20±4 20±4 330±40 310±50
Bovine cortical

femur bone
65±2 (Novitskaya et al., 2011) 2.0± 0.2 (Novitskaya et al., 2011) 8± 1 (Novitskaya et al., 2011) 550–700 (Currey et al., 2001; Zioupos

et al., 2000)
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between the moment (M) and the curvature (κ=radius−1) experienced
on the hollow cylinder can be determined by classical beam theory,

=M EIκ, where EI is the bending stiffness, E being the modulus of
elasticity and I is the second moment of the cross-sectional area. For a
thin circular tube of outer radius R and wall thickness t, the second
moment I can be approximated by I πR t~ 3 , and the maximum bending
stress is then given by =σ M πR t/( ).2 Similarly, the maximum shear
stress due to applied torque T is =τ T πR t/(2 ).2 Both expressions in-
dicate that increasing the wall thickness decreases both torsional and
bending stresses, at the expense of an increase in weight, which is un-
desirable for a bird. Given that I and J (polar moment of inertia) are
only a function of the geometry, these values have evolved (and in-
creased) in birds to decrease in mass while ensuring that the stresses are
within the elastic limit, thus improving the flight performance.

However, if the cross-section becomes too slender (internal/external
diameter ratio approaching 1) a number of problems can occur. During
bending the midsection can ovalize, if the material is not of sufficient
stiffness, as shown in Fig. 3b. This figure compares the bending moment
as a function of κ for two tubes, one that has a higher stiffness and one
with a lower stiffness. The higher stiffness material retains its circular
shape as the moment increases and has a linear M κ– relationship
(straight line). If the stiffness is not sufficient, ovalization of the cross

section occurs and the curve deviates from linearity (curved line), be-
cause the second moment of the cross sectional area for the horizontal
axis substantially decreases. At a critical bending moment, the ovali-
zation is so pronounced that a hollow cylinder undergoes local buckling
causing collapse. This is called Brazier buckling (Brazier, 1927), and
typically occurs at ~50% of the stress of the tube that retains its circular
cross-section. Thus, ovalization (with the major axis of the ellipse in the
direction perpendicular to the applied load) needs to be minimized to
avoid Brazier buckling during bending.

For a given bending moment, the maximum stress on the surface of
a tube can be reduced if I is increased. Fig. 4a-d illustrates circular and
elliptical cross-sections with their respective second moments of area.
With the major axis of the ellipse perpendicular to the applied load
(Fig. 4c), the ratio of the second moments of area of an elliptical to a
circular tube is:
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where a and b are the major and minor semi-axes of the ellipse, t is its
average (constant) thickness and β =b/a (< 1). With mass conserved,
the cross-sectional areas for circular and elliptical tubes are the same,
which implies a = 2 R/(1 + β). At the onset of ovalization, β decreases
from 1, and as it decreases further, Ix for the ellipse becomes increasing
smaller compared to the corresponding circular cross-section, as shown
in Fig. 4e. This unwanted effect leading to Brazier buckling can be offset
by increasing I:

(1) locally, by adding a material at the position of the maximum
bending moment, or

(2) globally, the bone could remodel to form an ellipse where the major
axis is parallel to the applied load (Fig. 4d).

For (1), the addition of material can take two forms: struts and
ridges. The presence of struts and ridges decrease the maximum stress
in the bone, and are also beneficial to the prevention of localized
buckling of the bone. Importantly, struts can minimize ovalization by
ensuring that the ratio =β b a/ does not change. They act as internal
columns or tension elements.

For (2), it is known that bone remodels in response to mechanical
loads (Ruff et al., 2006), the bone can form an ellipse with the major
axis oriented parallel to the direction of the applied load (Fig. 4d), then
the ratio of second moments of area is:
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This is graphically illustrated in Fig. 4e, showing that as ovalization
progresses (β decreasing), Iy increases thereby decreasing the maximum
stress on the bone. Ovalization with the major axis in the direction of
the applied load also increases the Brazier buckling resistance by in-
creasing the area moment of inertia.

The same type of analysis can be applied to torsional resistance. For
a thin-walled hollow circular and elliptical cylinders, the torsional
moment of inertia is:

=

=
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J π a b t
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where L = 4aE(e) is the length of the midline of the elliptical cross-
section (average perimeter), and E(e) is the complete elliptical integral
of the second kind, with = −e β1 2 . The ratio of the torsional moments
of inertia for an elliptical hollow cross-section and the circular one is
thus:

Fig. 3. (a) A gliding wing showing the bending and torsion axes and bending and torsion
moment arms. The solid dots mark the centers of lift. The torsion arm is the distance
between the center of lift and the neutral axis of torsion in the humerus. Lift applies a
moment about the torsion axis of the humerus. A bending moment occurs in the radio-
ulna that is transmitted through the joint to the humerus as a torsional moment at the
distal end. The bending moment in the proximal end of humerus is = ×M F OB and the
torsional moment is = ×T F OA. (b) Bending moment as a function of the curvature
(κ=radius-1) for two cylindrical tubes, one of a higher stiffness material (top straight line)
and one of a lower stiffness material (lower curve). If the stiffness is not sufficient, ova-
lization of the cross section is more pronounced and the curve deviates from linearity. At
a critical bending moment (dashed line), the tube undergoes buckling causing collapse
(Brazier buckling). Adapted from (Pennycuick, 2008).
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The above expression is valid approximately in the range
1/3< β <3, in which the perimeter of the ellipse can be determined
from an approximation = +L πa β2 (1 )/22 . The expression

= +R a β(1 )/22 follows from the condition of equal areas of the thin-
walled circular and elliptical cross-sections (2 π Rt= Lt), assuming that
both sections have the same constant wall thickness, t.

Eq. (4) indicates that ovalization, i.e., the decrease of β, reduces the
polar moment of inertia (Fig. 4f), thereby decreasing the torsional re-
sistance and increasing the shear stress in the bone. This can be remedied
by adding material locally (ridges). The presence of struts has far less effect
on torsional resistance, since they can rotate almost freely during torsion.

Fig. 4. (a) A hollow cylinder with radius R and wall thickness t with the second moment of area. (b) A hollow ellipse having major axis a and minor axis b with constant thickness t. (c) If
the load is applied in the direction of the minor axis, the second moment of area decreases over that of a circular cross-section. (d) If the load is applied in the direction of the major axis,
the second moment of area increases over that of a circular cross-section. (e) Plot of the normalized second moments of area as a function of b/a = β for the loading conditions in (c) –
solid line and (d) – dashed line. (f) Plot of the polar moment of inertia for an ellipse normalized to that of a circular cross-section, showing that as ovalization increases, Jellipse decreases.
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2.2. Bend to twist ratio

Adaptations to bending or torsional resistance can be quantified by
the ‘bend-to-twist’ ratio, EI/GJ, indicating that if this ratio is large, the
beam more easily twists than bends and vice versa (Pennycuick, 2008;
Pilkey, 2003; Lubarda, 2009; Etnier, 2003; Vogel, 1992). This ratio
depends on materials properties (E and G, the respective elastic and
shear moduli of the bone material) and shape factors (I and J, the re-
spective area and polar moments of inertia of the bone geometry). The
average values for E from a variety of birds were reported as 10.5 GPa
for the humerus and 12.1 GPa for the ulna (Casinos and Cubo, 2001),
which is roughly half that of mammalian skeletal bone (about 20 GPa
(Novitskaya et al., 2011)). For turkey leg bones G was reported as
0.98 GPa (Spatz et al., 1996). The ratio E/G for bird bones (~ 10) is
larger than for an isotropic solid (~ 3) or for cortical bovine femur bone
(~ 7) (Reilly and Burstein, 1975), indicating the shape factors are im-
portant elements that can give the beam more bending or torsional
resistance. Biological materials that are slender columns (e.g. plant
stems, long bones) can adapt their cross-sectional shape according to
environmental forces (e.g. wind, movement forces) to maximize their
bending and/or torsion resistance (Pennycuick, 2008; Niklas, 1992).
Several researchers have reported on torsional and bending resistance
of wing bones. In pigeons, the torsional and bending resistance were the
same for the humerus, while the torsional resistance in the radio-ulna
was greater than the bending resistance (Pennycuick, 1967). Strain
gauges attached to live pigeons recorded considerable torsion, and
dorsoventral bending was produced in the humerus (Biewerner and
Dial, 1995). It was concluded that the critical design feature for this
bone was torsion resistance. Torsional resistance during flight has been
proposed to be more significant than bending resistance for bat wing
bones (Swartz et al., 1992). In other work on 22 bird species, it was
suggested that macro- and micro-structural features were developed in
the humerus and ulna to enhance the torsion resistance, and in the
radius and carpometacarpus to increase the bending resistance (de
Margerie et al., 2006).

3. Materials and methods

Wing bone samples were gathered from a flapping/soaring bird, a
turkey vulture, which was found dead in the Anza Borrego desert in
California. Samples were stored in ambient dry condition at room
temperature and normal humidity. Wing bones (humerus, ulna and
carpus) from another vulture, the California condor, were provided by
the San Diego Museum of Natural History. Those two birds were chosen
due to their ultimate ability to soar which presumably is one of the most
important factors in the formation of the reinforcing struts inside the
wing bones.

3.1. Micro-computed tomography (µ-CT)

Wing bones (humerus, ulna and carpus) from the condor were
scanned with a micro-computed tomography (µ-CT) scanner (Skyscan
1076, Kontich, Belgium) inside a dry plastic tube. The imaging was
performed at 36 µm isotropic voxel sizes applying an electric potential
of 70 kV and a current of 200 µA, using a 0.5 mm aluminum filter.
Images and 3D rendered models were developed using Skyscan's
DataViewer and CTVox software.

3.2. 3D printed sample preparation

3D prototypes of the bones with reinforcing struts were prepared
using ABS (acrylonitrile-butadiene-styrene, with a density equal to
1.2 g/cm3, and elastic modulus equal to 2.3 GPa) plastic by a 3D
printer (Stratasys Inc., MN, USA) with resolution of 0.33 mm/layer.
Three samples of each design were printed: hollow cylinders (4 cm in
length, 1.9 cm in diameter, 0.2 cm in wall thickness), and similar

cylinders with struts (0.15 cm in diameter, with a distance of 0.35 cm
between struts) on the side, reinforcing struts were overlapped such
that all cross-sections contained two struts inside the hollow tubes. Note
that the samples tested in torsion contained larger sections with square
cross-sections on the ends to be mounted in the device for twisting (the
struts were printed all the way to the ends)

3.3. Torsion and ovalization testing

Torsion testing was performed using a custom built torsion testing
device (Porter et al., 2015). The device was attached to the crossheads
of an Instron materials testing machine (Instron 3367 Dual Column
Testing Systems, Norwood, MA) and converts the applied linear dis-
placement of the crosshead to a rotational displacement through a rack
and pinion. The 3D printed prototypes were tested by applying a ro-
tation to one end of the sample and recording the angle of twist as a
function of applied load. All samples were tested until fracture.

Another set of 3D printed prototypes were tested in diametral
compression to assess the effect of struts on ovalization. Tests were
conducted on a universal testing machine equipped with 30 kN load cell
(Instron 3367 Dual Column Testing Systems, Norwood, MA), using the
compression mode between two platens with strain rate equal to
10−3 s−1. Load versus displacement curves were recorded for the tests.
All samples were tested until fracture.

4. Results and discussion

4.1. Structural analysis

Fig. 5 shows a photograph of the turkey vulture humerus with re-
gions indicated where cross-sectional photographs were taken (prox-
imal end). Struts and ridges are observed in the cross-sections, which
diminish in density away from the proximal end. The struts have el-
liptical cross-sections with major and minor axes ~ 500 µm and
250 µm, respectively, as shown in the scanning electron micrograph.
This ellipticity is apparently made to reduce the bending stress.

Fig. 6 depicts µ-CT cross-sectional images along the entire wing
bone (humerus (a-f), ulna (g-l) and carpus (m-o)) of the condor. The
bones decrease in diameter from the proximal to distal end. All bones
show ovalization of their cross sections at the proximal and distal ends,
with more circular shapes in the midsections. The trabecular bone at
each end gradually changes to having strut-like components and then
internal reinforcements disappear in the midsection.

Bending and torsion resistance have been suggested to be equally
important in the humerus (Pennycuick, 1967; de Margerie et al., 2006;
Biewerner and Dial, 1995). The humerus has exaggeratedly large
proximal and distal ends compared with its midsection and with the
other wing bones. The shapes at these ends are elongated in one di-
rection, which appear to maximize I in the loading direction. The shape
is also dictated by the placement of ligaments, tendons, and muscles. If
the humerus is considered as a cantilever beam, loaded at the distal
end, the bending moment decreases progressively from the proximal to
distal end. The struts in Fig. 6c would be loaded in compression,
thereby helping to prevent local buckling. The thickened and elliptical
shape of the proximal end of the ulna (Fig. 6g,h) confirms that the
bending and twisting moments in the humerus are transferred to the
ulna as a bending moment (Pennycuick, 1967). Increased torsional
resistance will be obtained by having circular cross-section, which is
apparent in Fig. 6d, and can be further enhanced by adding material
locally (ridges), which are observed in Fig. 6e. The ridges in these cross-
sections appear as semi elliptical bumps on the bone interior, as they
are flat against the inner bone wall. The ulna midsection appears more
oval-shaped than circular. The carpus cross-section in Fig. 6m has an
extension on the upper left, where the first digit or ‘thumb’ is extended.
The carpus also has more oval-shaped midsections, indicating that it
may be optimized for bending resistance.
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Fig. 5. Microscopic analysis of the turkey vulture humerus. Photograph showing cross-sections at the indicated position. A complex arrangement of struts are observed. A scanning
electron micrograph of the elliptically-shaped strut.

Fig. 6. Micro-computed tomography sectional along a condor wing. The proximal and distal ends of the humerus, ulna and carpus are ovalized, whereas the midsections are more
circular. (a)-(f) Humerus, (g)-(l) ulna and (m)-(o) carpus.
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4.2. 3D printed prototypes: testing the hypothesis of reinforcing struts

Struts were placed inside cylindrical tubes simulating pneumatic
bones to establish their effect on mechanical performance. The re-
sistance to bending ovalization may be tested by a diametral com-
pression test in which the distributed line forces were applied in the
direction perpendicular to the cylinder axis, as shown in the insert of
Fig. 7a. Particularly, Fig. 7a shows representative compressive load
versus displacement curves on the 3D printed samples with no struts
and struts oriented either horizontal (0°, perpendicular to the force
direction) or vertical (90°, parallel to the force direction). The inset
shows the samples tested, which were the ABS (blue) hollow cylinders
with an array of parallel struts, a corresponding SolidWorks model was
included for visualization purposes. The samples were compressed be-
tween parallel platens with the struts oriented as shown in the plot. All
samples were tested until fracture. In diametral compression, both
configurations with struts (0°, horizontal, in green and 90°, vertical, in
red) show higher stiffness and strength compared to the hollow cy-
linder. The 0° orientation (in green) was optimal, with the highest
modulus, strength and strain to failure. These samples withstood a
138% higher load and a 27% larger displacement compared to the
hollow cylinder. In this configuration, the horizontal struts are under
tension and resist ovalization of the cylinder.

For the 90° orientation, the struts are under compression and the
samples have a 21% smaller load and a 20% smaller displacement than
for the 0° orientation. This orientation of struts and applied load cor-
responds to the configuration of struts inside the bird wing bones
loaded from the ventral side. These results demonstrate that struts ap-
pearing on the ventral side of bones increase the bending resistance
during bird flight by decreasing ovalization.

The torsion samples (inset, Fig. 7b) were printed with square ends to
fit into the torsion testing grips. The diameter of the torsion sample, the
strut diameter and the orientation of the struts were the same as in the
compression samples, a corresponding SolidWorks model was included
for visualization purposes. Torsion test results show no significant

difference between the samples with and without struts, all three curves
matched closely up to the fracture point. These results suggest that
position and orientation of struts are optimized to resist bending, but
not torsion. In the case of torsion, reinforcing ridges would be more
effective; alternatively, the placement and orientation of ridges could
be designed in a manner to counter the tensile forces created by torsion.

4.3. Analytical modeling: circular ring reinforced by vertical and horizontal
struts

To gain a better understanding of the greater stiffening of the cir-
cular cylinder caused by the horizontal compared to the vertical struts,
an analytical study of the stiffening and ovalization of a circular ring
reinforced by the vertical or horizontal struts (Fig. 8a,c) was conducted.
For simplicity we adopt a model of small elastic deformations. Both
problems are four times statically indeterminate. For a vertically stif-
fened ring (90° orientation), by symmetry, it is sufficient to consider
only the upper portion of the ring (Fig. 8b), while for the horizontally
stiffened ring (0° orientation), it is sufficient to consider only the left
portion of the ring (Fig. 8d). The unknown axial forces and bending
moments (X1, X2, X3, X4) are determined by requiring that the corre-
sponding displacements and slopes are equal to zero (due to the sym-
metry of the reinforced ring across its horizontal or vertical diameter).
These conditions can be expressed in the standard canonical form (Gere
and Timoshenko, 1990) as:

∑+ = =
=

δ δ X i0, 1, 2, 3, 4i
j

ij j0
1

4

(5)

where δij = δji are the Maxwell influence coefficients, equal for both
vertical and horizontal struts. The coefficients δi0 specify the displace-
ments or the slopes at the considered points due to the applied force
alone; they are different in the cases of the vertical vs. horizontal strut
stiffening. All the coefficients (δij and δi0) can be calculated by the unit
load construction of the structural mechanics analysis and are listed in

Fig. 7. Load frame test results on 3D-printed bone prototypes with no struts, and struts oriented at 0° (horizontal, green) and 90° (vertical, red). (a) Compressive load versus displacement
curves. Both the 0° and 90° orientations allow for higher loads before failure. (b) Torque versus rotation angle, confirming that struts do not affect torsional resistance. Insets show
photographs of the prototypes. SolidWorks models used to print the samples are added for visualization purposes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 8. Circular ring reinforced with a horizontal or
vertical strut: (a) The circular ring of mid-radius R
under compressive forces F. The ring is reinforced by
the vertical strut of length 2 h, located at the distance
c = ψR from the center of the ring, so that cosφ = ψ

and sinφ = h/R. The bending stiffness of the strut is
=E I αEIs s , where EI is the bending stiffness of the

ring. (b) The upper-half of the ring with the in-
dicated axial forces (X1, X3) and bending moments
(X2, X4) in the cross-sections along the horizontal
plane of symmetry. (c) The circular ring reinforced
by the horizontal strut of length 2 h, located at the
distance c = ψR from the center of the ring. (d) The
left-half of the ring with the indicated axial forces
(X1, X3) and bending moments (X2, X4) in the cross-
sections along the vertical plane of symmetry.

Fig. 9. Analysis of a circular ring reinforced with struts: (a) The shortening v (scaled by =v FR EI* /3 ) of the vertical diameter of the ring vs. =ψ c R/ (position of the strut) for the vertical
and horizontal strut. (b) The ovalization of the ring, given by the displacement ratio u/v, where u is the elongation of the horizontal diameter of the ring due to applied vertical loads F.
The red dashed line points out ψ for the 3D printed prototypes.
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the Appendix of this paper. The four linear algebraic equations (Eq. 5)
for Xi's were solved by the MATLAB software for each position of the
reinforcing strut c = ψR (where ψ = cosφ (position of the strut), and R
is radius of the ring) in the range 0 ≤ ψ ≤ 0.8. It is assumed that in the
range of ψ>0.8 the strut is sufficiently long (slender) for the ele-
mentary beam bending theory to apply. The vertical displacement (v)
between the points of the load application (shortening of the vertical
diameter of the ring) is calculated by superimposing the displacement
contributions in the half-ring configurations shown in Fig. 8b,d from F
and Xi's. This gives:

= ∑ +

= ∑ +

=

=

v X δ FR π
EI

vertical strut

v X δ FR π
EI

horizontal strut

4
( )

8
( )

i i i

i i i

1
4

0
3

1
4

0
3

(6)

Fig. 9a depicts the shortening of the vertical diameter of the ring vs.
ψ (position of the strut) for both, vertical and horizontal struts. For
ψ<0.425 (strut closer to the center of the ring), this shortening is
greater in the case of the horizontal strut, but for ψ>0.425 it is greater
in the case of the vertically stiffened ring. As a consequence, for
ψ>0.425, a greater force is needed to produce a given vertical dis-
placement (fattening of the ring) in the case of a stiffening of the ring by
the horizontal strut. This explains the stiffening behavior observed in
the experiments, reported in Fig. 7a, where we tested the 3D printed
prototypes of the dimensions R = 0.85 cm and c = 0.45 cm, with the
corresponding ψ = 0.53> 0.425.

The horizontal displacement (u) between the end points of the
horizontal diameter of the ring (specifying its lateral expansion due to
applied vertical forces F) can also be calculated by using the unit load
method of structural mechanics. By the Betti's reciprocal theorem of
linear elasticity, the expansion of the ring along its horizontal diameter
is equal for both stiffenings, by the vertical and horizontal strut, pro-
vided that c (position of reinforcing strut) is the same in both cases.
Thus, it suffices to determine u in only one case of stiffening; this is
done for the vertical strut in the Appendix of the paper. The results are
used to calculate the ovalization of the ring, given by the displacement
ratio u/v. This is shown in Fig. 9b. For ψ<0.425, the ovalization is
greater in the vertically stiffened ring, and for ψ>0.425 in the hor-
izontally stiffened ring.

5. Conclusions

The internal structures in the bones of the wings of a turkey vulture

and a condor were evaluated by micro-computed tomography and op-
tical microscopy. The mechanical role of reinforcing struts was ana-
lyzed through torsion and diametral compression testing of 3D printed
bone prototypes. The main findings are:

• Photographs of the humerus at different cross-sections near the
proximal end showed a complicated network of struts, some span-
ning across the interior, and ridges, which are raised and elongated
at various angles to the inner bone;

• The struts have elliptical cross-sections with major and minor axes
~ 500 µm and 250 µm, so shaped to resist compression and tension,
thereby reinforcing the inner walls;

• Micro-computed tomography images of cross-sections along the
entire wing bones showed progressively smaller diameters, with
elliptically-shaped proximal and distal ends and more circular cross-
sections in the midsections;

• Testing of 3D printed hollow cylinders with an array of struts placed
off-axis to model the internal struts indicate that struts resist ova-
lization in diametral compression, while have no effect on torsional
resistance;

• An elastic model of a circular ring reinforced by horizontal and
vertical struts was used to explain the stiffening caused by differ-
ently oriented struts, in qualitative agreement with experimental
results.

Acknowledgements

We thank Esther Cory and Professor Robert Sah (UC San Diego) for
the help with µ-CT imaging, Professor Colin Pennycuick (University of
Bristol) for his valuable insights and discussions, and Tarah Sullivan for
helping with the figures. We also thank Raul Aguiar, Rancho la Bellota,
Baja California, México, for helping us with specimen collection. We are
also grateful to Philip Unitt, Curator, Department of Birds and
Mammals, San Diego Natural History Museum, for providing us with
the condor bone for characterization. This research was funded by a
Multi-University Research Initiative through the Air Force Office of
Scientific Research (AFOSR-FA9550-15-1-0009) and a by a National
Science Foundation, Division of Materials Research, Biomaterials
Program Grant 1507169.

Appendix

The Maxwell influence coefficients δij = δji for the circular ring reinforced by either vertical or horizontal strut from Fig. 8a,c are

=
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= − +
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The location of the strut is specified by c = ψR (ψ = cosφ), where 0 ≤ ψ ≤ 1, although the upper bound of ψ is less than one (say ~ 0.8) in order
that the strut is long enough to be treated by the beam theory. In terms of the angle φ shown in Fig. 8a,c, ψ = cosφ and h = Rsinφ, where R is the
mid-radius of the thin ring and 2 h is the length of the strut. The parameter α is the ratio of the bending stiffness of the strut EsIs and the ring, α= EsIs
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/EI, while the parameter β is defined such that Is/As = βR2, where Is and As are the moment of inertia and the area of the cross-section of the strut. In
calculations reported in Section 3.3, we selected α = 1 and β = 2.5 × 10−3. This value of β corresponds to circular cross-section of the strut whose
radius is 1/10 of the radius of the ring.

The coefficients δi0, in the case of the reinforcement by the vertical strut (Fig. 8b), are

= ⎛
⎝
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= =
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If the ring is reinforced by the horizontal strut (Fig. 8d), the coefficients δi0 are
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The horizontal displacement, i.e., the increase of the ring's length along its horizontal diameter, can be determined by summing the integral
contributions along the ring from the products of the momentMk due to loading shown in Fig. A1a and the moment due to the unit load shown in Fig.
A1b,

∫∑=u M M
EI

dl.
k

k k

It follows that
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where, upon integration,
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